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Exact asymptotics for linear processes

Plan of talk

-Early results

-Central limit theorem for linear processes

-Functional central limit theorem for linear processes

-Selfnormalized CLT

-Exact asymptotic for linear processes
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Early results: i.i.d. �nite second moment

Theorem
Let (ξ j ) be i.i.d., centered at expectation with �nite second moments.

∑n
j=1 ξ jp
n

! σN(0, 1)

and
∑[nt ]
j=1 ξ jp
n

! σW (t)

Here σ = stdev(ξ0).
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CLT for linear processes with �nite second moments

Xk =
∞

∑
j=�∞

ak+j ξ j , Sn =
n

∑
j=1
Xj ,

Theorem
(Ibragimov and Linnik, 1971) Let (ξ j ) be i.i.d. centered with �nite second
moment, ∑∞

k=�∞ a
2
k < ∞ and σ2n = var(Sn)! ∞. Then

Sn/σn
D! N(0, 1).

σ2n =
∞

∑
j=�∞

b2nj , bn,j = aj+1 + ...+ aj+n.

It was conjectured that a similar result might hold without the assumption
of �nite second moment.
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Functional central limit theorem question for linear
processes.

For 0 � t � 1 de�ne

Wn(t) =
∑[nt ]
i=1 Xi
σn

where [x ] is the integer part of x .

Problem
Let (ξ j ) be i.i.d. centered with �nite second moment, ∑∞

k=�∞ a
2
k < ∞ and

σ2n = nh(n) with h(x) a function slowly varying at ∞.(h(tx)/h(x)! 1
for all t as x ! ∞). Is it true that Wn(t)) W (t), where W (t) is the
standard Brownian motion?

This will necessarily imply in particular that for every ε � 0,

P( max
1�i�n

jXi j � εσn)! 0 as n! ∞.
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Functional CLT. Counterexample.

Example

There is a linear process (Xk ) such that σ2n = nh(n) and such that the
weak invariance principle does not hold:

P(jξ0j > x) �
1

x2 log3/2 x
,

a0 = 0, a1 =
1
log 2

and an =
1

log(n+ 1)
� 1
log n

, for n � 2,

σ2n � n/(log n)2 and lim sup
n!∞

P( max
1�i�n

jξ i j � εσn) = 1 .
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Functional CLT.

When E(jξ0j2+δ) < ∞ and σ2n = nh(n) then functional CLT holds.
Wn(t)! W (t) with Wn(t) standard Brownian motion
Merlevède-P (2006).

When E(ξ20) < ∞ and σ2n = n
λh(n) with λ > 1 then Wn(t) converges

weakly to the fractional Brownian motion WH with Hurst index λ/2.

Fractional Brownian motion with Hurst index λ/2, i.e. is a Gaussian
process with covariance
structure 1

2 (t
λ + sλ � (t � s)λ) for 0 � s < t � 1.
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CLT for i.i.d. centered with in�nite second moments

(�) H(x) = E(ξ20I (jξ0j � x)) is a slowly varying function at ∞.

De�ne b = inf fx � 1 : H(x) > 0g

ηj = inf
�
s : s � b+ 1, H(s)/s2 � j�1

	
, j = 1, 2, � � �

Theorem
Then

∑n
j=1 ξ jp
nHn

! N(0, 1)

and
∑[nt ]
j=1 ξ jp
nHn

! W (t)

where Hn = H(ηj )
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Selfnormalized CLT for i.i.d. centered with in�nite second
moments

Giné, Götze and Mason(1997)

Theorem

H(x) = E(ξ20I (jξ0j � x)) is a slowly varying function at ∞ is equivalent to

∑n
j=1 ξ jq

∑n
j=1 ξ2j

! N(0, 1)

and
∑[nt ]
j=1 ξ jq

∑n
j=1 ξ2j

! W (t)

where Hn = H(ηj )
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CLT for linear processes with in�nite second moments

X0 = ∑∞
j=�∞ aj ξ j is well de�ned if

∑
j2Z,aj 6=0

a2j H(jaj j�1) < ∞,

Theorem
(P-Sang, 2011) Let (ξk )k2Z be i.i.d., centered. Then the following
statements are equivalent:
(1) ξ0 is in the domain of attraction of the normal law (i.e. satis�es (�))
(2) For any sequence of constants (an)n2Z as above and ∑∞

j=�∞ b
2
nj ! ∞

the CLT holds. ( i.e. there are constants Dn such that Sn/Dn ! N(0, 1)).
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Regular weights and in�nite variance (long memory).

an = n�αL(n), where 1/2 < α < 1 ,

E(ξ20I (jξ0j � x)) = H(x)

Example
Fractionally integrated processes. For 0 < d < 1/2 de�ne

Xk = (1� B)�d ξk = ∑
i�0
ai ξk�i where ai =

Γ(i + d)
Γ(d)Γ(i + 1)

and B is the backward shift operator, Bεk = εk�1.

For any real x , limn!∞ Γ(n+ x)/nxΓ(n) = 1 and so

lim
n!∞

an/nd�1 = 1/Γ(d).
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Regularly varying weights and in�nite variance; normalizers.

De�ne b = inf fx � 1 : H(x) > 0g

ηj = inf
�
s : s � b+ 1, H(s)/s2 � j�1

	
, j = 1, 2, � � �

B2n := cαHnn3�2αL2(n) with Hn = H(ηn)

where

cα = f
Z ∞

0
[x1�α �max(x � 1, 0)1�α]2dxg/(1� α)2 .
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Invariance principle for regular weights and in�nite variance
(long memory).

an = n�αL(n), where 1/2 < α < 1, n � 1, E(ξ20I (jξ0j � x)) = H(x),
L(n) and H(x) are both slowly varying at ∞.

Theorem
(P-Sang 2011) De�ne Wn(t) = S[nt ]/Bn. Then, Wn(t) converges weakly
to the fractional Brownian motion WH with Hurst index 3/2� α,
(1/2 < α < 1).

Fractional Brownian motion with Hurst index 3/2� 2α, i.e. is a Gaussian
process with covariance structure 1

2 (t
3�2α + s3�2α � (t � s)3�2α) for

0 � s < t � 1.
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Selfnormalized invariance principle

Theorem
(P-Sang 2011) Under the same conditions we have

1
nHn

n

∑
i=1
X 2i

P! A2 where A2 = ∑
i
a2i

and therefore
S[nt ]

nan
q

∑n
i=1 X

2
i

)
p
cα

A
WH (t) .

In particular
Sn

nan
q

∑n
i=1 X

2
i

) N(0,
cα

A2
) .
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Higher moments. Exact asymptotics.

We aim to �nd a function Nn(x) such that, as n! ∞,

P(Sn � xσn)

Nn(x)
= 1+ o(1), with σ2n = kSnk22.

where x = xn � 1 (Typically xn ! ∞).

We call P(Sn � xnσn) the probability of moderate or large deviation
probabilities depending on the speed of xn ! ∞.
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Exact asymptotics versus logarithmic

Exact approximation is more accurate and holds under less restrictive
moment conditions than the logarithmic version

logP(Sn � xσn)

logNn(x)
= 1+ o(1).

For example, suppose P(Sn � xσn) = 10�4 and Nn(x) = 10�5; then their
logarithmic ratio is 0.8, which does not appear to be very di¤erent from 1,
while the ratio for the exact version is as big as 10.
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Nagaev Result for i.i.d.

Theorem
(Nagaev, 1979) Let (ξ i ) be i.i.d. with

P(ξ0 � x) =
h(x)
x t
(1+ o(1)) as x ! ∞ for some t > 2,

and for some p > 2, ξ0 has absolute moment of order p. Then

P(
n

∑
i=1

ξ i � xσn) = (1�Φ(x))(1+ o(1)) + nP(ξ0 � xσn)(1+ o(1))

for n! ∞ and x � 1.
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Nagaev Result for i.i.d.

Notice that in this case

Nn(x) = (1�Φ(x)) + nP(ξ0 � xσn).

If 1�Φ(x) = o[nP(ξ0 � xσn)] then in we can also choose
Nn(x) = 1�Φ(x).

If nP(ξ0 � xσn) = o(1�Φ(x)) we have Nn(x) = nP(ξ0 � xσn).
The critical value of x is about xc = (2 log n)1/2.
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Linear Processes. Moderate and large deviation

Let (ξ i ) be i.i.d. with

P(ξ0 � x) =
h(x)
x t
(1+ o(1)) as x ! ∞ for some t > 2,

and for some p > 2, ξ0 has absolute moment of order p.

Theorem
(P-Sang-Zhong-Wu, 2011) Let Sn = ∑n

i=1 Xi where Xi is a linear process.
Then, as n! ∞,

P (Sn � xσn) = (1+ o(1))
∞

∑
i=�∞

P(bn,i ξ0 � xσn)+ (1�Φ(x))(1+ o(1))

holds for all x > 0 when σn ! ∞, ∑∞
k=�∞ a

2
k < ∞ and bnj > 0,

bn,j = aj+1 + � � �+ aj+n.
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Zones of moderate and large deviations

De�ne the Lyapunov�s proportion

Dnt = B
�t/2
n2 Bnt where Bnt = ∑

i
btni .

For x � a(lnD�1nt )1/2 with a > 21/2 we have

P(Sn � xσn) = (1+ o(1))
kn

∑
i=1

P(cni ξ0 � xσn) as n! ∞ .

On the other hand, if 0 < x � b(lnD�1nt )1/2 with b < 21/2, we have

P (Sn � xσn) = (1�Φ(x))(1+ o(1)) as n! ∞.
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Application

Value at risk (VaR) and expected shortfall (ES) are equivalent to quantiles
and tail conditional expectations.
Under the assumption limx!∞ h(x)! h0 > 0

P (Sn � xσn) = (1+ o(1))
h0
x t
Dnt + (1�Φ(x))(1+ o(1)).

Given α 2 (0, 1), let qα,n be de�ned by P(Sn � qα,n) = α.
qα,n can be approximated by xασn where x = xα is the solution to the
equation

h0
x t
Dnt + (1�Φ(x)) = α.
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Extension to dependent structures

-CLT for stationary and ergodic di¤erences innovations with �nite second
moment. (P-Utev, 2006)
-invariance principles for generalized martingales Wu Woodroofe (2004),
Dedecker-Merlevède-P (2011)
-moderate deviations for generalized martingales. Merlevède-P (2010)
- CLT stationary martingales di¤erences with in�nite second moment plus
a mild mixing assumption. (P-Sang 2011)

Results for mixing sequences under various mixing assumptions.
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Some open problems

Is the CLT for linear processes equivalent with its selfnormalized version?

Sn/Vn ! N(0, 1) where V 2n =
n

∑
i=1
X 2i

CLT for linear processes with in�nite variance and ergodic martingale
innovations

Functional CLT for linear processes with i.i.d. innovations �nite second
moment and var(Sn) = nh(n)
(necessary and su¢ cient conditions on the constants)

The same question for generalized martingales

Exact asymptotics for classes of Markov chains

More classes of functions of linear processes
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Key Ingredients for exact deviations.

Lemma

Assume Sn = ∑kn
j=1 Xnj (Xnj triangular array of independent variables) is

stochastically bounded, the variables are centered, and xn ! ∞. Then for
any 0 < η < 1, and ε > 0 such that 1� η > ε,

P(Sn � xn) = P(S (εxn)n � xn) +
kn

∑
j=1

P(Xnj � (1� η)xn)

+o(
kn

∑
j=1

P(Xnj � εxn)) +
kn

∑
j=1

P((1� η)xn � Xnj < (1+ η)xn).
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Fuk�Nagaev inequality ( S. Nagaev, 1979)

Theorem
Let Y1,Y2, � � � ,Yn be independent random variables and m � 2. Suppose
EYi = 0, i = 1, � � � , n, β = m/(m+ 2), and α = 1� β = 2/(m+ 2).
For y > 0, de�ne Y (y ) = Yi I (Yi � y),
An(m; 0, y) := ∑n

i=1 E[Ymi I (0 < Yi < y)] and
B2n (�∞, y) := ∑n

i=1 E[Y 2i I (Yi < y)]. Then for any x > 0 and y > 0

P(
n

∑
i=1
Y (y )i � x) � exp(� α2x2

2emB2(�∞, y)
) + (

A(m; 0, y)
βxym�1

)βx/y .
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Theorem
Let (Xnj )1�j�kn be an array of row-wise independent centered random
variables. Let p > 2 and denote Sn = ∑kn

j=1 Xnj , σ2n = ∑kn
j=1 EX 2nj ! ∞,

Mnp = ∑kn
j=1 EX pnj I (Xnj � 0) < ∞, Lnp = σ�pn Mnp and denote

Λn(u, s, ε) =
u
σ2n

kn

∑
j=1

EX 2nj I (Xnj � �εσn/s).

Furthermore, assume Lnp ! 0 and Λn(x4, x5, ε)! 0 for any ε > 0. Then
if x � 0 and x2 � 2 ln(L�1nt )� (t � 1) ln ln(L�1nt )! �∞, we have

P (Sn � xσn) = (1�Φ(x))(1+ o(1)).
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